

Super-RTL: Duell der Tiere

VS.

VS.

VS.

Manfred Eilers

Fachgespräch Stahlbrückenbau 27.09.2017

PMMA

VS.

Epoxidharz

Bearbeitergruppe schnelle Abdichtungssysteme

- Schnellerer Einbau, kürzere Bauzeiten
- Einbauzeitraum vergrößern (Frühjahr und Herbst)

1. Lösungsansatz:

Beschleunigtes Epoxidharz

Einbautemperatur	Standard-Epoxidharz	Beschleunigtes Epoxidharz		
Wartezeit bis zum Aufschweißen der Bahnen				
+ 8°C	ca. 72 Std.	ca. 16 Std.		
+ 23°C	ca. 24 Std.	ca. 8 Std.		
+ 40°C	ca. 16 Std.	ca. 6-7 Std.		

Ausführung einer Versiegelung ab + 4 °C möglich

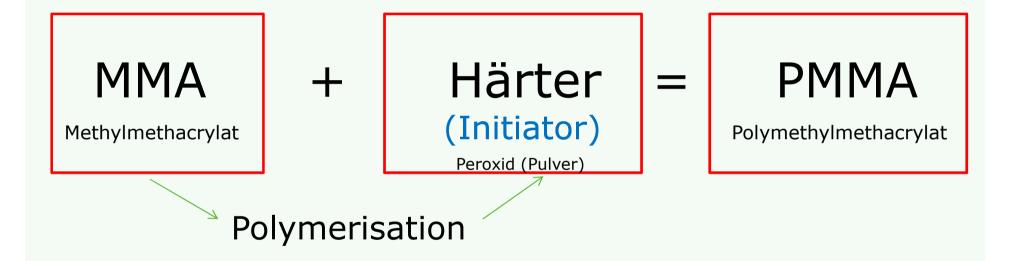
2. Lösungsansatz:

HANV

http://www.bast.de/DE/Ingenieurbau/Publikationen/Veranstaltungen/B2-2014-Stahlbruecken/Expertengespraech.html?nn=613336

Versiegelungen, Grundierungen und Kratzspachtelungen auf der Basis von PMMA

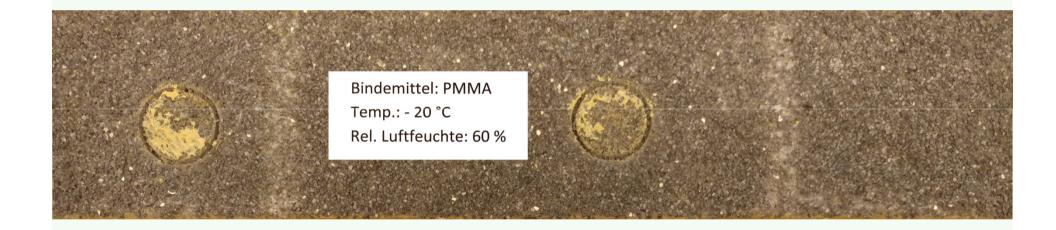
Reaktionsmechanismus Epoxidharze


Wichtig:

Mischungsverhältnis: Komp. A + Komp. B einhalten!

Anwendungstemperatur: ≈ + 5 °C bis + 45 °C

Reaktionsmechanismus PMMA

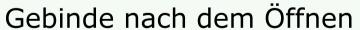

Wichtig:

Mischungsverhältnis: variabel (temperaturabhängig)! Anwendungstemperatur: \approx - 10 °C bis + 30 °C

Probekörper RHD-Belag bei -20°C hergestellt!

Die Steuerung der Reaktionsgeschwindigkeit bei verschiedenen Temperaturen läuft über die Zugabemenge des Peroxides!

Für unseren Anwendungsbereich wird eine gleichbleibende Reaktionsgeschwindigkeit über alle Temperaturbereiche angestrebt!



Steuerung der Reaktionsgeschwindigkeit bei verschiedenen Temperaturen (Ziel – überarbeitbar nach 2 Stunden):

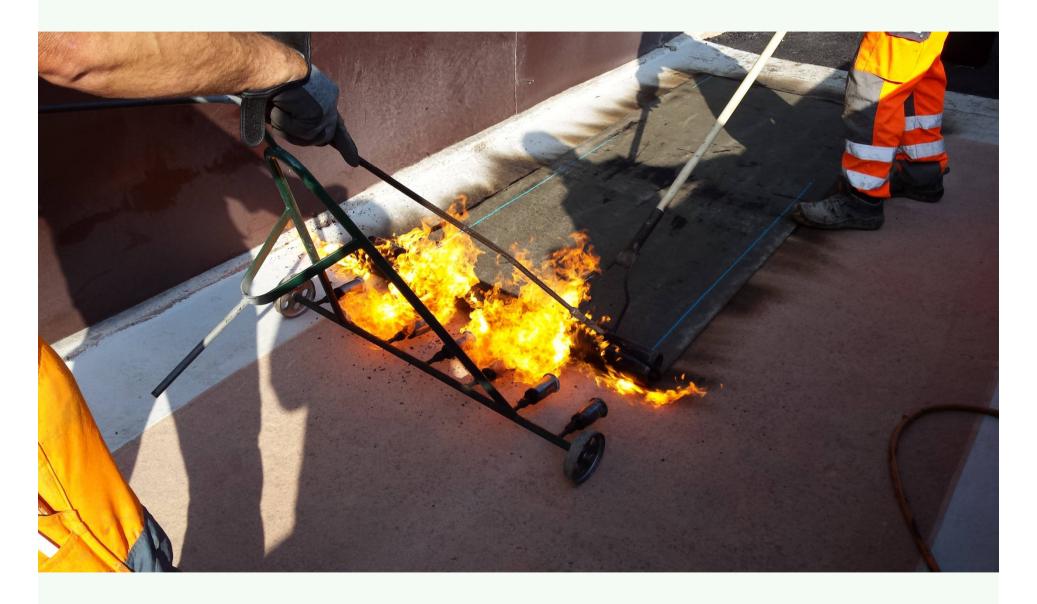
Oberflächen- Temperatur des Betons	Gebindegröße (MMA Harz)	Zugabemenge Härter in [Gew%]	Zugabemenge Härter in [ml]
+26 bis +30°C	20 kg	1 Gew% (200 g)	314 ml
+16 bis +25°C°	20 kg	2 Gew% (400 g)	628 ml
+6° bis + 15C	20 kg	4 Gew% (800 g)	1256 ml
+1° bis +5°C	20 kg	5 Gew% (1000 g)	1570 ml
-5°bis 0°C	20 kg	6 Gew% (1200 g)	1890 ml

Aufrühren der Flüssigkomponente



Zugabe des Peroxides

Aufbringen der Grundierung bzw. Kratzspachtelung


Manfred Eilers

Fachgespräch Stahlbrückenbau 27.09.2017

Aufschweißen der Schweißbahn

Oberflächentemperatur	Temperaturspanne -5°C bis +30°C
Wartezeit bis Begehbarkeit	Nach ca. 30 – 45 Minuten*
Wartezeit bis zur Prüfung der Abreißfestigkeit	Nach ca. 60 - 120 Minuten*
Wartezeit bis zur Verlegung der Bitumenschweißbahn	Nach ca. 2 Stunden*

^{*} In Abhängigkeit von der Zugabemenge des Härterpulvers

Vergleich der Wartezeiten bis zum Aufschweißen der Polymerbitumen-Schweißbahn

Oberflächen- temperatur	Standard- Epoxidharz	Beschleunigtes Epoxidharz	PMMA
-5C bis 0°C	Keine Reaktion	Keine Reaktion	
+1°C bis +5°C	Keine Reaktion	Extrem langsame Reaktion	2 Stunden!
+6°C bis +15°C	ca. 72 Stunden	ca. 16 Stunden	
+16°C bis +30°C	ca. 24 Stunden	ca. 8 Stunden	
+30°C bis +40°C	ca. 16 Stunden	ca. 6 Stunden	Keine Anwendung

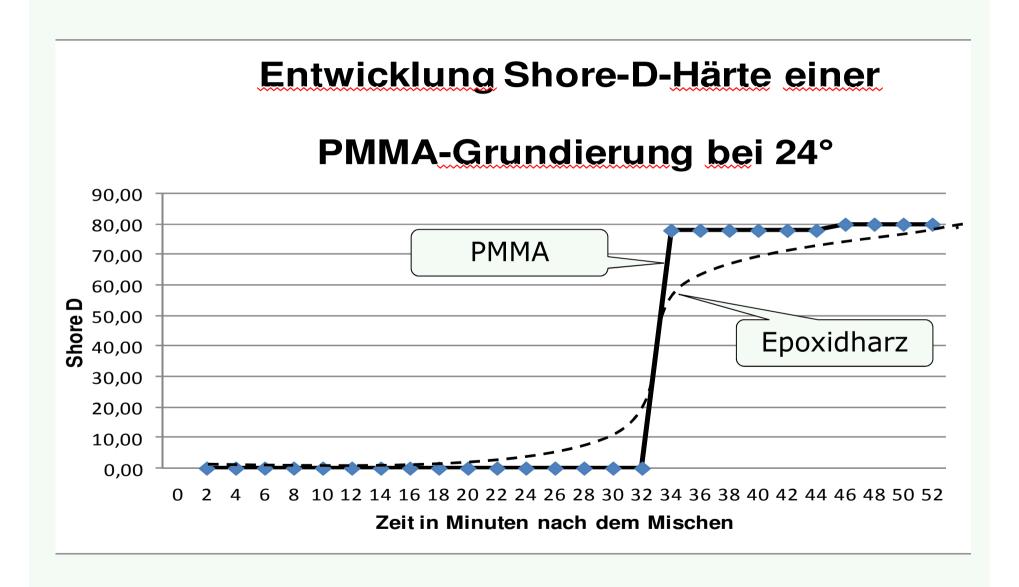
Ausführung von Versiegelungen, Grundierungen und Kratzspachtelungen möglich.

Einbau analog ZTV-ING Teil 7 Abschnitt 1 "Beläge auf Betonbrücken" mit einigen materialspezifischen Besonderheiten.

Einbau kann bei Temperaturen der Luft und der Unterlage ab 0 °C erfolgen.

Dies gilt dann auch für das Aufschweißen der Polymerbitumen-Schweißbahnen.

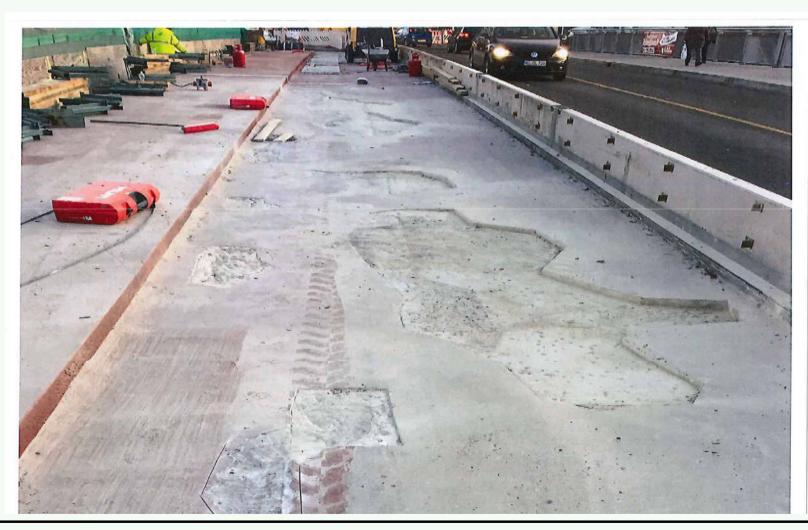
Oberfläche muss intensiv vorbereitet (gestrahlt) werden

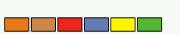


Härterpulver, Dosierung über Messbecher

Weißanlaufen / Carbamatbildung

Manfred Eilers


Fachgespräch Stahlbrückenbau 27.09.2017



- Auch beim Einbau von Versiegelungen oder Grundierungen auf der Basis von PMMA muss die Unterlage trocken sein.
- Auch hier muss die Oberflächentemperatur der Unterlage mindestens 3 K über der Taupunkttemperatur der umgebenden Luft liegen, um Taubildung sicher auszuschließen.
- Aufgrund der schnellen Aushärtung ist das Material sehr schnell (nach ca. 30 Minuten) regenfest bzw. feuchtigkeitsunempfindlich.
- Daher ist der Einbau bis zu einer relativen Luftfeuchte von 90 % möglich.

Herausforderung an die Hersteller: Umgang mit Schadstellen und Betonersatz

BASt-Projekt:

Performance schneller PMMA-Versiegelungen

Referenzliste für Erfahrungssammlung

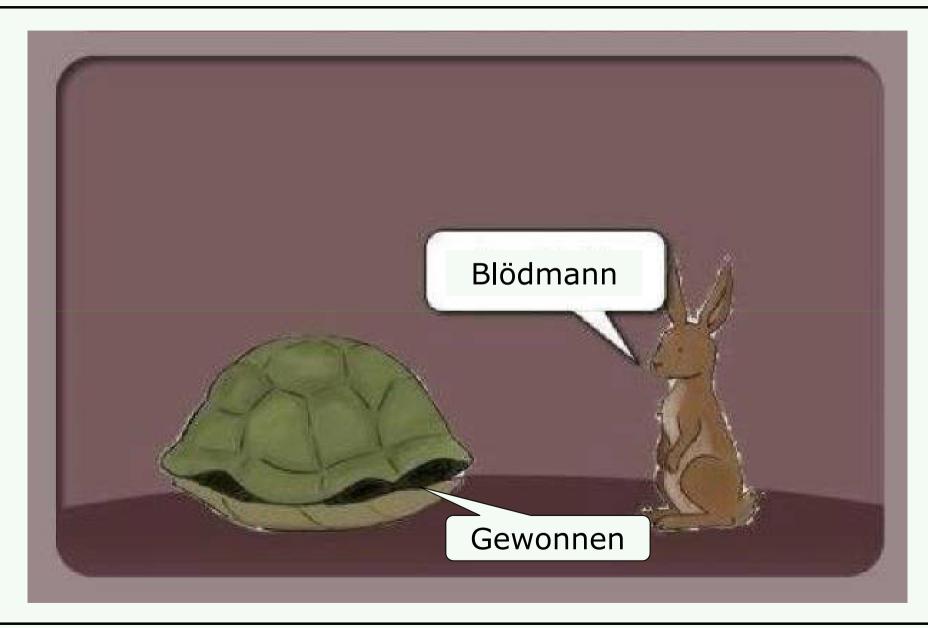


Bauvorhaben	Fläche m²	Ausführung Jahr
A 46 TB Lennetal	200	2015
BW Nordbahnstrasse Wuppertal	400	2015
BAB A 8, Brücke ü.d. Kreistr. 10, 66989 Nüschweiler	100	2015
Kurfürstendamm 33, 10719 Berlin	300	2015
Kronenstraßen Brücke, Freiburg	320	2016
BAB A 952 BW 3, Starnberg	600	2015
WTZ Würzburg, Magdalene Schoch Str.	340	2015
BW Bansin / Usedom	500	2016
PD Ärztehaus, Karlsruhe	150	2015
BAB A 92 Freising-Süd	1.500	2016
B 27 Saalebrücke Hammelburg	600	2016
A 40 Mülheim/Ruhr	300	2016
Brücke Untersteinach	500	2017
PD Uniklinik Würzburg	800	2016
Diverse kleine Brückenbauwerke in NRW	1.800	2016
Rahmendurchlaß L 433 Nusplingen	100	Okt 16
BW 101 über A 9, Allershausen	1.000	Nov 16
BW 103 über A 9, Allershausen	750	Nov 16
BW über die Ölschitz B 22, Bayreuth-Weiden	400	Dez 16
Karl-Nägele-Brücke Heilbronn	800	2017
B 2 Roth-Schwabach, Penzendorf 1. Überbau		2017
Herdbrücke Ulm		2016
Kochertalbrücke	560	2016
Düsseldorf, Am Dammsteg	350	2016
Trogbauwerk Geseke		2017

Hinweise für die Herstellung von Abdichtungssystemen aus einer Polymerbitumen-Schweißbahn auf einer Versiegelung oder Grundierung aus PMMA für Ingenieurbauten aus Beton

(H PMMA)

- Grundprüfung entsprechend TL-BEL-EP.
- Verträglichkeitsprüfung vor und nach Wärmebeanspruchung und Frost/Tau-Wechselbeanspruchung mit der zur Anwendung kommenden Polymerbitumen-Schweißbahn.
- Zusätzlich:
 Schubfestigkeit nach Frost/Tau Wechselbeanspruchung mit der zur
 Anwendung kommenden Polymerbitumen Schweißbahn.



- Temperaturunempfindlich.
- Erweiterung des Einbauzeitraums im Frühjahr und im Herbst.
- Abdichtung an einem Tag möglich.
- Sonstige Einbaubedingungen müssen stimmen.
- Beim Einbau müssen die materialspezifischen Besonderheiten beachtet werden, insbesondere der schnelle Härtungsverlauf.

