Improved Crossing Facilities Design for the Elderly and Persons with Disabilities

Dirk Boenke (STUVA)
Benjamin Schreck (BASt)
„Ageing and Safe Mobility“
27. November 2014, Bergisch Gladbach
Introduction
Introduction

Effects of demographic change

⇒ conflict of aims especially at crossing facilities
Introduction

Legal framework – accessibility of the physical environment

- **UN Convention on the Rights of Persons with Disabilities (CRPD)**
 „Accessibility“
 „[…] to enable persons with disabilities to live independently and participate fully in all aspects of life“ and “[…] to ensure […] persons with disabilities access, on an equal basis with others, to the physical environment [and] to transportation, […]”
 (art. 9 „Accessibility“ para. 1 CPRD)

- **Equal Treatment for the Disabled Act (BGG)**
 Provide accessibility to ”[…] buildings or other facilities, public ways, squares and roads and public accessible transport facilities […]”
 (§ 8 para. 2 sentence 1 BGG)

- **Technical standards**
 - Directives for the Design of Urban Roads (RASt 06)
 - Guidelines for the Design of barrier-free Traffic Facilities (H BVA)
 - Several national standards (DIN)
Introduction

Crossing facilities for all people – The German approach

- differentiated kerb heights – „dual crossing“
- not applicable at any location (sewage guide, available space, costs,...)

Source: H BVA

“stop” indicators (SF)

on carriageway level

6 cm kerb

Source: H BVA

ground surface indicators
- to locate (AF)
- to determine the direction of the crossing (RF)

Photo/Figure: Boenke
Introduction

Crossing facilities for all people – The German approach

- 3 cm kerb – one kerb for all (uniform height)
- a compromise in Germany for several years
- problem: number of affected people (conflict of aims) rises

usable for wheelchairs etc. palpable with the white cane
Introduction

Problem 1: The kerb

- in practice, a lot of different solutions to solve the conflict of aims
 - use of different kerb heights
 - use of different kerb designs
- no evaluation with participation of disabled people, no basis for standards
- unsatisfactory situation for all parties involved

Chamfered kerb (installation level 3 cm)
Rounded kerb (radius 2 cm, installation level 1 cm)
Rounded kerb (radius 5 cm, installation level 3 cm)
Ramped kerb

Photos (3): Boenke
Photo: Gme. Herrsching
Introduction

Problem 2: Extensive use of ground surface indicators

- installed to help blind and visually impaired people in orientation
- but:
 - extensive use at crossing facilities
 - endless variety of structures used
 - increasing complaints by users of wheelchairs: barrier
 - helping blind and visually impaired people in orientation???
Research project

Investigation methodology and findings
Investigation – Method and findings

Aims of the study

- Which kerb height/kerb design fulfils the requirements of the users best when building a kerb with a uniform height for all users?
 - best perceptibility for white cane users
 - best accessibility for wheelchairs and wheeled walkers
- which structures of tactile ground surface indicators:
 - show the best perceptibility for white cane users
 - are more accessible for wheelchairs and wheeled walkers (less vibrations)?

⇒ Looking for a design for all

⇒ project FE77.0500/2010 “Barrier-free crossing points on main roads - design of dropped kerbs and soil indicators in detail” funded by Federal Ministry of Transport and Digital Infrastructure, supervision by the Federal Highway Research Institute (BASt)
Investigation – Method and findings

Investigation method – Participation

- national and international literature study
- 1,384 interviews regarding experiences with the mobility of this group in street space
- **Comprehensive participation of people with disabilities**
 - National Centre of Competence for Accessibility
 - Representatives from the German Association for the Blind and Visually Impaired
 - the Social Association of Germany (physically handicapped)
- objective and subjective methods (measurements and survey with test subjects)
Investigation – Method and findings

Kerbs – Installation height

Test on installation height

- force to surmount the kerb raises with installation height
- small wheels have extreme difficulties ascending an edge 4 cm and above
- high failure (approx. 30%) when detecting kerbs (3 cm)
 - thus test subjects moved beyond (independent from kerb design)
 - observation was confirmed by the survey (interviews)

⇒ installation height of 3 cm has thus far proven to be suitable as design for all
Investigation – Method and findings

Investigation method – Practical tests

Objective measurement

- **vibrations (tactile reply) on the cane** when in contact with the different kerbs and surface indicators with this aid,
- **vibrations** on the handle **when rolling over** various kerbs and surface indicators with a wheeled walker,

Subjective evaluation

- perceptibility and accessibility of different kerbs and structures of surface indicators rated by **test subjects with a disability** who use an aid for mobility,
- perceptibility and accessibility of different kerbs and surface indicators rated by **test subjects** of a comparison group (people **without disability**) who use an aid for mobility.
Kerbs – Installation height and kerb design

<table>
<thead>
<tr>
<th>Kerb</th>
<th>Principle</th>
<th>Kerb</th>
<th>Principle</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Rounded kerb (r = 1.5 cm)</td>
<td></td>
<td>B4 Chamfered kerb (3 cm/3 cm, 45 degrees)</td>
<td></td>
</tr>
<tr>
<td>B2 Rounded kerb (r = 2.0 cm)</td>
<td></td>
<td>B5 Sinusoidal kerb</td>
<td></td>
</tr>
<tr>
<td>B3 Rounded kerb (r = 5.0 cm)</td>
<td></td>
<td>B6 Ramp</td>
<td></td>
</tr>
</tbody>
</table>
Investigation – Method and findings

Kerbs – Edge design

- shows the conflict of aims: e.g. wheeled walkers and blind people rating vice versa
- round kerb edges are better to access with rolling aids
- angular kerb edges are more perceptible with the white cane

⇒ a rounded kerb with an edge with a radius of 2 cm has to be proven the best solution as design for all
Investigation – Method and findings

Ground surface indicators – Ridged plates

- Ridged plates, right-angled bars („stop field“)
 - poor ratings from users of rolling aids, if increasing distance between bars
 - rated with good „stop function“ by white cane users (independent from distance between bars)

- ridged plate with longitudinal bars (functionality „guiding“)
 - high functionality to guide white cane users
 - accessible without any difficulties for users of rolling aids
Investigation – Method and findings

Ground surface indicators – Choice of items

Truncated cones/knobs

<table>
<thead>
<tr>
<th>32 truncated cones diagonally, diameter 33 mm</th>
<th>50 truncated cones, diagonally</th>
<th>32 knobs, diagonally</th>
<th>36 truncated cones, orthogonally</th>
<th>36 knobs, orthogonally</th>
</tr>
</thead>
</table>
Investigation – Method and findings

Ground surface indicators – Truncated cones/knobs (1)

- Knobs
 - decreasing performance (perceptibility) as size of knobs or number of knobs decreases
 - good accessibility for users of rolling aids
- truncated cones (large diameter)
 - very good accessibility for users of rolling aids
 - perceptibility with the white cane rated „not so good“ in some cases
 - very good perceptibility when stepping on the cones (feet/shoes)

⇒ safety/functionality for location strip is given
Investigation – Method and findings

Ground surface indicators – Truncated cones/knobs (2)

- **Truncated cones**
 - very good perceptibility, independent from their arrangement (diagonally, orthogonally)
 - small diameter: whitecane users complaining tactile feedback as “too heavy” and “unpleasant” in some cases
 - small diameter: accessibility by users of rolling aids criticised (“sharp blow”)

- **Truncated cones/knobs, orthogonally arrangement**
 - problems to distinguish between truncated cones/ knobs and ridged plates
Recommendations
Recommendations

Kerbs

- a rounded kerb with a radius of 2 cm fulfills the needs of all users best (Design for all)
- when building a crossing facility with an uniform height of the kerb an installation height of 3 cm was proven to be the best height for all users
- at main roads kerbs with an installation height of 3 cm should be secured by tactile ground surface indicators to prevent stepping over (difficult orientation via acoustics)

⇒ radius of 2 cm should be new standard, because fulfils functional requirements of all users best
Recommendations

Ground surface indicators

- **ridges with small distance of bars*** fulfil the requirements of white cane users and users with rolling aids better than wide ridges

- **truncated cones with bigger diameters*** are better accessible and at the same time perceptible enough for white cane users to point to crossing facilities

- **cones** should **only be arranged diagonally** rather than orthogonally to be sure not to be mixed up with ridged plates

* within the framework of valid (German) specifications
Recommendations

Further recommendations

- continuous mobility training for safe and improved use of mobility aids
- mobility aids should be improved to improve mobility
- use of pre-fabricated parts to avoid lowering of kerbs (installation height above carriageway level)
- ramps could be an improved design for all-solution at crossing facilities (tests showed some good approaches for good accessibility and perceptibility; but only one layout tested)

⇒ further research necessary
Thank you! Any questions?

Dr.-Ing. Dirk Boenke, STUVA e. V.
d.boenke@stuva.de

Benjamin Schreck, BASt
schreck@bast.de